Minimax Rate Optimal Adaptive Nearest Neighbor Classification and Regression
نویسندگان
چکیده
k Nearest Neighbor (kNN) method is a simple and popular statistical for classification regression. For both regression problems, existing works have shown that, if the distribution of feature vector has bounded support probability density function away from zero in its support, convergence rate standard kNN method, which same all test samples, minimax optimal. On contrary, unbounded we show that there gap between achieved by bound. To close this gap, propose an adaptive different selected samples. Our selection rule does not require precise knowledge underlying features. The proposed significantly outperforms one. We characterize it matches lower
منابع مشابه
Discriminant Adaptive Nearest Neighbor Classification and Regression
Robert Tibshirani Department of Statistics University of Toronto tibs@utstat .toronto.edu Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions We propose a locally adaptive form of nearest neighbor classification to try to finesse this curse of dimensionality. We use a local linear discriminant analysis to e...
متن کاملAdaptive Metric nearest Neighbor Classification
Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose a locally adaptive nearest neighbor classification method to try to minimize bias. We use a Chisqu...
متن کاملDiscriminant Adaptive Nearest Neighbor Classification
Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions We propose a locally adaptive form of nearest neighbor classification to try to finesse this curse of dimensionality. We use a local linear discriminant analysis to estimate an effective metric for computing neighborhoods. We determine the local decision b...
متن کاملAdaptive Kernel Metric Nearest Neighbor Classification
Nearest neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions due to the curse-ofdimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. We propose an adaptive nearest neighbor classification method to try to minimize bias. We use quasiconformal transformed kernels t...
متن کاملLocally Adaptive Metric Nearest-Neighbor Classification
ÐNearest-neighbor classification assumes locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with finite samples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest-neighbor rule. We propose a locally adaptive nearest-neighbor classification method to try to minimize bias. We use a Chi-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2021
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2021.3062078